

OPERA

Development of Operando Techniques and Multiscale Modelling to Face the Zero-Excess Solid-State Battery Challenge

Presented by:

Filip Maletic AVL List GmbH, Austria

https://horizon-opera.eu/ https://twitter.com/Horizon_OPERA https://www.linkedin.com/showcase/horizon-opera/

This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement No. 101103834

Project Overview

Celia Polop, Carmen Morant, Enrique G. Michel, Herko vd Meulen

Coordination. Scanning probe microscopies. Synchrotron radiation photoelectron spectroscopies.

Jozef Keckes, Christoph Gammer

Synchrotron X-ray nano-diffraction. Transmission electron microscopy.

Peter Siffalovic

Synchrotron radiation X-ray scattering. Raman spectroscopy. CEMEA

Miguel Angel Niño, Michael Foerster

Synchrotron photoemission electron microscopy. Low energy electron microscopy.

Daniel Rettenwander, Mir Mehraj Ud Din Li-based bulk materials development. Cell design. Electrochemical analysis. Electron backscatter diffraction.

Fraunhofer Kristian Nikolowski Na-based bulk materials development. Electrochemical analysis.

Thin-film materials development. Cell design. Electrochemical analysis. Synchrotron photoelectron spectroscopies.

Manfred Burghammer

Synchrotron radiation X-ray diffraction

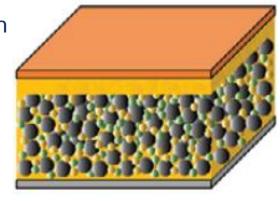
Qiong Cai, Tao Chen Modelling and theory

Simon Erker, Filip Maletic Modelling and simulations

Stephan Junker, Christian Ahlers

Administrative management. Communication. Dissemination.

Development of devices



Top Goals

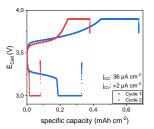
What happens during the initial state of anode formation in Zero-Excess Solid-State Li and Na Batteries?

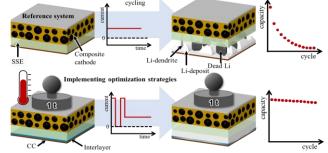
ZESSB

How can we tailor the nucleation and growth of the anode?

Nanoscale multiparameter operando mapping of the battery interfaces: stress field, microstructure, phase distribution, chemical composition, oxidation state, impedance, degradation.

Development of novel operando synchrotron techniques at ESRF, ALBA and DESY with nanometer resolution. Multiscale modelling assisted by a machine learning framework.




This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement No. 101103834

Short First Results

- Thin-film solid-state cell development for high-resolution 4D investigations
- Operando microscale spatio-temporal tracking of stresses and interfaces for ZESSBs
- Development of an operando stacking-pressure stage for nano-XRD at ID13-ESRF
- Operando microscale spatio-temporal tracking of stresses and interfaces for ZESSBs
- Development of an operando stacking-pressure stage for nano-XRD at ID13-ESRF
- Operando cross-sectional nano-XRD & post-mortem analysis of Li-ZESSBs
- Development of an operando bending-strain stage for photoelectron spectroscopy at ALBA and ESRF
- Operando Low Energy and Photo Emission Electron Microscopy (LEEM-PEEM) and AFM of Na and Li-ZESSBs
- A modelling framework for screening interlayer materials
- Nuclear Reaction Analysis for screening interlayer materials
- Coupled Electrochemical-Mechanical Modelling of a SSB Cell
- Reference cell design

Alignment with the Roadmap Goals

- One of the important aspects of OPERA is a development of methodology and frameworks for modelling of advanced cell designs
- Atomistic-scale, first-principle models → screening of materials, understanding of underlying phenomena
- Continuum-scale, cell-level models → simulation of a final product, design optimization
- Simulation benefits:
 - Material development
 - Design optimization
 - Understanding the limits
- We would suggest that the future Roadmap reflects the possible benefits of using the advanced simulation techniques for a development of new battery technologies

programme under grant agreement No. 101103834