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Emerging chemistries in energy storage promise
disruptive benefits (i.e. safety, sustainability, circularity,
cycle lifetime, performance, and reduced costs), and
can potentially unlock new applications.

Extensive R&D is needed to overcome fundamental
challenges and demonstrate their feasibility (TRL<4)




YA New chemistries = Gen5

TABLE 1: BATTERY GENERATIONS CATEGORISATION
Battery Electrodes active materials Cell Chemistry / Type Forecast
Generation market
deployment
Gen 1l s Cathode: LFP, NCA Li-ion Cell current
e Anode: 100% carbon
Gen 2a e Cathode: NMC111 Li-ion Cell current
e Anode: 100% carbon
Gen 2b e Cathode: NMC523 to NMC 622 Li-ion Cell current
e Anode: 100% carbon
Gen 3a s Cathode: NMCG22 to NMC 811 Optimised Li-ion 2020
e Anode: carbon (graphite) + silicon content (5-
10%)
Gen 3b e Cathode: HE-NMC, HVS (high-voltage spinel) Optimised Li-ion 2025
¢ Anode: silicon/carbon
Gen 4a e Cathode NMC Solid state Li-ion 2025
* Anode Si/C
s Solid electrolyte
Gen 4b s Cathode NMC Solid state Li metal >2025

e Anode: lithium metal
e Solid electrolyte

Gen 4c » (Cathode: HE-NMC, HVS (high-voltage spinel) Advanced solid state 2030
s Anode: lithium metal
s Solid electrolyte

Gen 5 e Li|O; - lithium air / metal air New cell gen: metal-air/ | >2030
» Conversion materials (primarily Li|S) conversion chemistries /

® new ion-based systems (MNa, Mg or Al) new _'Dn_'b‘:"md insertion
chemistries
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Chung, W.J., et al. (2013), Nat. Chem., 5 (6), 518-524.

Gen 5 chemistries: M-S
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AN  Gen 5 chemistries: new ion based (K, Mg,

Ca, Zn, Al, etc)
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Stack Electrolyte

Particular architecture - Decoupled power and energy
Energy module: tanks containing electrolyte (kWh). More volume of electrolyte, more energy
Power module: stack of electrochemical cells (kW). More or bigger cells, more power
Flow system: pipes and pumps

Main challenges
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BATTERY Food for thought...

New chemistries obviously benefit from chemistry agnostic approaches:

* Accelerated Discovery (adv. ch. methods, digitalisation,etc)
* Improved interfaces

* Smart and connected

e Sustainability...

On the other hand...

* New chemistries are VERY diverse
* Each new chemistry has its own specific challenges, risk of dilution (Gen 5)
* Often get less attention because they target distant scenarios

Can we gain focus and ambition if these technologies are
discussed in a specific chapter?




overcome fundamental
challenges

new materials

stable interfaces

fundamental
understanding

cyclability

computational models

e disruptive concepts

advance technologial
development stage

e Cell design
e Manufacturability

e System level
demonstration

e Operational conditions
e Solid state concepts
e Scalability

e Safety evaluation

Sustainability and growth

e end-of-life and recycling
solutions

¢ |Integration
e Large scale production

e Market penetration



How to integrate new chemistries within the other pillars of B2030+? Should they have
their own chapter?

How to give visibility to the diversity of new chemistries?

Where do you see the major challenges for new chemistries?

Which aspects should be included in the roadmap?

An opportunity to update TRL definition and the battery generation categorization?




