

Contributing to The European Batteries R&I Community

New Chemistries

The B2030+ roadmap workshop

M. Casas Cabanas, CIC energiGUNE

This project has received funding from the European Union's Horizon Europe research and innovation programme under grant number No. 101104022.

Setting the scene

Emerging chemistries in energy storage promise disruptive benefits (i.e. safety, sustainability, circularity, cycle lifetime, performance, and reduced costs), and can potentially unlock new applications.

Extensive R&D is needed to overcome fundamental challenges and demonstrate their feasibility (TRL<4)

New chemistries → Gen5

TABLE 1: BATTERY GENERATIONS CATEGORISATION

Battery Generation	Electrodes active materials	Cell Chemistry / Type	Forecast market deployment
Gen 1	Cathode: LFP, NCAAnode: 100% carbon	Li-ion Cell	current
Gen 2a	Cathode: NMC111Anode: 100% carbon	Li-ion Cell	current
Gen 2b	Cathode: NMC523 to NMC 622Anode: 100% carbon	Li-ion Cell	current
Gen 3a	 Cathode: NMC622 to NMC 811 Anode: carbon (graphite) + silicon content (5-10%) 	Optimised Li-ion	2020
Gen 3b	 Cathode: HE-NMC, HVS (high-voltage spinel) Anode: silicon/carbon 	Optimised Li-ion	2025
Gen 4a	 Cathode NMC Anode Si/C Solid electrolyte 	Solid state Li-ion	2025
Gen 4b	Cathode NMCAnode: lithium metalSolid electrolyte	Solid state Li metal	>2025
Gen 4c	 Cathode: HE-NMC, HVS (high-voltage spinel) Anode: lithium metal Solid electrolyte 	Advanced solid state	2030
Gen 5	 Li O₂ – lithium air / metal air Conversion materials (primarily Li S) new ion-based systems (Na, Mg or Al) 	New cell gen: metal-air/ conversion chemistries / new ion-based insertion chemistries	>2030

Gen 5 chemistries: M-air

Gen 5 chemistries: M-S

CATHODE

- Insulating S
- Low S utlization
- Capacity fading
- Loss of active material

Gen 5 chemistries: new ion based (K, Mg, Ca, Zn, Al, etc)

Lack of optimized components

Poor ion mobility

Solvent co-intercalation

Proton intercalation

Low cycle life

Low voltage

but also...RFB

DECOUPLED POWER AND ENERGY

<u>Particular architecture</u> \rightarrow Decoupled power and energy

- Energy module: tanks containing electrolyte (kWh). More volume of electrolyte, more energy
- **Power module**: stack of electrochemical cells (kW). More or bigger cells, more power
- Flow system: pipes and pumps

Main challenges

- Cost
- Side reactions /(electro)chemical-thermal stability
- Crossover (selectivity)
- Resistance (ASR)
- Concentration (energy density)
- Leakage

Anion shuttle

Huoride-ion batteries offer a promising new battery chemistry with up to ten times more energy der than currently available Lithium batteries.

Food for thought...

New chemistries obviously benefit from chemistry agnostic approaches:

- Accelerated Discovery (adv. ch. methods, digitalisation, etc)
- Improved interfaces
- Smart and connected
- Sustainability...

On the other hand...

- New chemistries are VERY diverse
- Each new chemistry has its own specific challenges, risk of dilution (Gen 5)
- Often get less attention because they target distant scenarios

Can we gain focus and ambition if these technologies are discussed in a specific chapter?

Setting objectives

Short	Medium	Long
overcome fundamental challenges	advance technologial development stage	Sustainability and growth
 new materials 	Cell design	 end-of-life and recycling solutions
 stable interfaces 	 Manufacturability 	Integration
 fundamental understanding 	 System level demonstration 	 Large scale production
• cyclability	 Operational conditions 	 Market penetration
 computational models 	 Solid state concepts 	
• disruptive concepts	Scalability	
	 Safety evaluation 	

Round table Q&A

How to integrate new chemistries within the other pillars of B2030+? Should they have their own chapter?

How to give visibility to the diversity of new chemistries?

Where do you see the major challenges for new chemistries?

Which aspects should be included in the roadmap?

An opportunity to update TRL definition and the battery generation categorization?